Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.904
1.
Food Sci Nutr ; 12(5): 3225-3236, 2024 May.
Article En | MEDLINE | ID: mdl-38726419

Hepatic polypeptide nutrient solution (HP) is a mixture of hepatoprotective peptides derived from fresh porcine liver with various effects. However, the role and mechanisms of HP in nonalcoholic fatty liver disease (NAFLD) are still not well understood. We investigated the effects of HP NAFLD rats induced by high-cholesterol diet (HCD) and its underlying mechanisms. Rats were provided with HCD for 4 weeks and then received HP or metformin after 2 weeks of HCD feeding. The study found that HP reduced cholesterol and triglyceride levels in rats with NAFLD (all p < .05). Histopathological examination also showed that HP improved the liver lesions induced by the HCD diet. Furthermore, the oxidative stress and inflammatory responses of NAFLD rats treated with HP were also improved. In addition, it was discovered that HP triggered the activation of AMPK and decreased the expression of SREBP-1c and FAS while enhancing the expression of PPAR α and CPT-1 in liver. These findings indicated that HP might have therapeutic potential for NAFLD, possibly via activating AMPK signaling pathway.

2.
Clin J Am Soc Nephrol ; (0)2024 May 10.
Article En | MEDLINE | ID: mdl-38728096

BACKGROUND: Accurately predicting kidney outcomes in IgA nephropathy is crucial for clinical decision making. Insufficient use of longitudinal data in previous studies has limited the accuracy and interpretability of prediction models for failing to reflect the chronic nature of IgA nephropathy. This study aimed at establishing a multivariable dynamic deep learning model using comprehensive longitudinal data for the prediction of kidney outcomes in IgA nephropathy. METHODS: In this retrospective cohort study of 2,056 IgA nephropathy patients at 18 kidney centers, a total of 28,317 data points were collected by the sliding window method. Among them, 15,462 windows in a single center were randomly assigned to training (80%) and validation (20%) sets while 8797 windows in 18 kidney centers were assigned to an independently test set. Interpretable Multi-Variable Long Short-Term Memory (IMV-LSTM), a deep learning model, was implemented to predict kidney outcomes (kidney failure or 50% decline in kidney function) based on time-invariant variables measured at biopsy and time-variant variables measured during follow-up. Risk performance was evaluated using Kaplan-Meier analysis and the C statistic. Trajectory analysis was performed to assess the various trends of clinical variables during follow-up. RESULTS: The model achieved a higher C statistic (0.93; 95% CI, 0.92-0.95) on the test set than the XGBoost prediction model that we developed in a previous study using only baseline information (C statistic, 0.84; 95% CI, 0.80-0.88). Kaplan-Meier analysis showed that groups with lower predicted risks from the full model survived longer than groups with higher risks. Time-variant variables demonstrated higher importance scores than time-invariant variables. Within time-variant variables, more recent measurements showed higher importance scores. Further interpretation showed that certain trajectory groups of time-variant variables such as serum creatinine and urine protein were associated with elevated risks of adverse outcomes. CONCLUSIONS: In IgA nephropathy, a deep learning model can be used to accurately and dynamically predict kidney prognosis based on longitudinal data, and time-variant variables show strong ability to predict kidney outcome.

3.
Tree Physiol ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38728368

Flavonoids are crucial medicinal active ingredients in Ginkgo biloba. However, the effect of protein post-translational modifications (PTMs) on flavonoid biosynthesis remains poorly explored. Lysine acetylation, a reversible PTM, plays a crucial role in metabolic regulation. This study aims to investigate the potential role of acetylation in G. biloba flavonoid biosynthesis. Through comprehensive analysis of transcriptomes, metabolomes, proteomes, and acetylated proteins in different tissues, a total of 11,788 lysine acetylation sites were identified on 4324 acetylated proteins, including 89 acetylation sites on 23 proteins. Additionally, 128 types of differentially accumulated flavonoids were identified among tissues, and a dataset of differentially expressed genes related to the flavonoid biosynthesis pathway was constructed. Twelve (CHI, C3H1, ANR, DFR, CCoAOMT1, F3H1, F3H2, CCoAOMT2, C3H2, HCT, F3'5'H, and FG2) acetylated proteins that might be involved in flavonoid biosynthesis were identified. Specifically, we found that the modification levels of CCoAOMT1 and F3'5'H sites correlated with the catalytic production of homoeriodictyol and dihydromyricetin, respectively. Inhibitors of lysine deacetylase (trichostatin A, TSA) impacted total flavonoid content in different tissues and increased flavonoid levels in G. biloba roots. Treatment with TSA revealed that expression levels of GbF3'5'H and GbCCoAOMT1 in stems and leaves aligned with total flavonoid content variations, while in roots, expression levels of GbC3H2 and GbFG2 corresponded to total flavonoid content changes. Collectively, these findings reveal for the first time the important role of acetylation in flavonoid biosynthesis.

4.
BMC Cancer ; 24(1): 573, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724951

BACKGROUND: Microsatellite instability-high (MSI-H) has emerged as a significant biological characteristic of colorectal cancer (CRC). Studies reported that MSI-H CRC generally had a better prognosis than microsatellite stable (MSS)/microsatellite instability-low (MSI-L) CRC, but some MSI-H CRC patients exhibited distinctive molecular characteristics and experienced a less favorable prognosis. In this study, our objective was to explore the metabolic transcript-related subtypes of MSI-H CRC and identify a biomarker for predicting survival outcomes. METHODS: Single-cell RNA sequencing (scRNA-seq) data of MSI-H CRC patients were obtained from the Gene Expression Omnibus (GEO) database. By utilizing the copy number variation (CNV) score, a malignant cell subpopulation was identified at the single-cell level. The metabolic landscape of various cell types was examined using metabolic pathway gene sets. Subsequently, functional experiments were conducted to investigate the biological significance of the hub gene in MSI-H CRC. Finally, the predictive potential of the hub gene was assessed using a nomogram. RESULTS: This study revealed a malignant tumor cell subpopulation from the single-cell RNA sequencing (scRNA-seq) data. MSI-H CRC was clustered into two subtypes based on the expression profiles of metabolism-related genes, and ENO2 was identified as a hub gene. Functional experiments with ENO2 knockdown and overexpression demonstrated its role in promoting CRC cell migration, invasion, glycolysis, and epithelial-mesenchymal transition (EMT) in vitro. High expression of ENO2 in MSI-H CRC patients was associated with worse clinical outcomes, including increased tumor invasion depth (p = 0.007) and greater likelihood of perineural invasion (p = 0.015). Furthermore, the nomogram and calibration curves based on ENO2 showed potential prognosis predictive performance. CONCLUSION: Our findings suggest that ENO2 serves as a novel prognostic biomarker and is associated with the progression of MSI-H CRC.


Biomarkers, Tumor , Colorectal Neoplasms , Disease Progression , Microsatellite Instability , Phosphopyruvate Hydratase , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Prognosis , Female , Male , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Middle Aged , Nomograms , Single-Cell Analysis , DNA Copy Number Variations
5.
Food Res Int ; 186: 114331, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729716

Peach fruit is prone to chilling injury (CI) during low-temperature storage, resulting in quality deterioration and economic losses. Our previous studies have found that exogenous trehalose treatment can alleviate the CI symptoms of peach by increasing sucrose accumulation. The purpose of this study was to explore the potential molecular mechanism of trehalose treatment in alleviating CI in postharvest peach fruit. Transcriptome analysis showed that trehalose induced gene expression in pathways of plant MAPK signaling, calcium signaling, and reactive oxygen species (ROS) signaling. Furthermore, molecular docking analysis indicated that PpCDPK24 may activate the ROS signaling pathway by phosphorylating PpRBOHE. Besides, PpWRKY40 mediates the activation of PpMAPKKK2-induced ROS signaling pathway by interacting with the PpRBOHE promoter. Accordingly, trehalose treatment significantly enhanced the activities of antioxidant-related enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and gluathione reductase (GR), as well as the transcription levels AsA-GSH cycle related gene, which led to the reduction of H2O2 and malondialdehyde (MDA) content in peach during cold storage. In summary, our results suggest that the potential molecular mechanism of trehalose treatment is to enhance antioxidant capacity by activating CDPK-mediated Ca2 + -ROS signaling pathway and WRKY-mediated MAPK-WRKY-ROS signaling pathway, thereby reducing the CI in peach fruit.


Antioxidants , Cold Temperature , Fruit , Gene Expression Profiling , Gene Expression Regulation, Plant , Prunus persica , Reactive Oxygen Species , Signal Transduction , Trehalose , Trehalose/pharmacology , Trehalose/metabolism , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Signal Transduction/drug effects , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Molecular Docking Simulation , Malondialdehyde/metabolism
6.
Anal Chem ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38730304

Rapidly identifying and quantifying Gram-positive bacteria are crucial to diagnosing and treating bacterial lower respiratory tract infections (LRTIs). This work presents a field-deployable biosensor for detecting Gram-positive bacteria from exhaled breath condensates (EBCs) based on peptidoglycan recognition using an aptamer. Dielectrophoretic force is employed to enrich the bacteria in 10 s without additional equipment or steps. Concurrently, the measurement of the sensor's interfacial capacitance is coupled to quantify the bacteria during the enrichment process. By incorporation of a semiconductor condenser, the whole detection process, including EBC collection, takes about 3 min. This biosensor has a detection limit of 10 CFU/mL, a linear range of up to 105 CFU/mL and a selectivity of 1479:1. It is cost-effective and disposable due to its low cost. The sensor provides a nonstaining, culture-free and PCR-independent solution for noninvasive and real-time diagnosis of Gram-positive bacterial LRTIs.

7.
Mol Med Rep ; 30(1)2024 Jul.
Article En | MEDLINE | ID: mdl-38695251

Although exogenous calcitonin gene­related peptide (CGRP) protects against hyperoxia­induced lung injury (HILI), the underlying mechanisms remain unclear. The present study attempted to elucidate the molecular mechanism by which CGRP protects against hyperoxia­induced alveolar cell injury. Human alveolar A549 cells were treated with 95% hyperoxia to establish a hyperoxic cell injury model. ELISA was performed to detect the CGRP secretion. Immunofluorescence, quantitative (q)PCR, and western blotting were used to detect the expression and localization of CGRP receptor (CGRPR) and transient receptor potential vanilloid 1 (TRPV1). Cell counting kit­8 and flow cytometry were used to examine the proliferation and apoptosis of treated cells. Digital calcium imaging and patch clamp were used to analyze the changes in intracellular Ca2+ signaling and membrane currents induced by CGRP in A549 cells. The mRNA and protein expression levels of Cyclin D1, proliferating cell nuclear antigen (PCNA), Bcl­2 and Bax were detected by qPCR and western blotting. The expression levels of CGRPR and TRPV1 in A549 cells were significantly downregulated by hyperoxic treatment, but there was no significant difference in CGRP release between cells cultured under normal air and hyperoxic conditions. CGRP promoted cell proliferation and inhibited apoptosis in hyperoxia, but selective inhibitors of CGRPR and TRPV1 channels could effectively attenuate these effects; TRPV1 knockdown also attenuated this effect. CGRP induced Ca2+ entry via the TRPV1 channels and enhanced the membrane non­selective currents through TRPV1 channels. The CGRP­induced increase in intracellular Ca2+ was reduced by inhibiting the phospholipase C (PLC)/protein kinase C (PKC) pathway. Moreover, PLC and PKC inhibitors attenuated the effects of CGRP in promoting cell proliferation and inhibiting apoptosis. In conclusion, exogenous CGRP acted by inversely regulating the function of TRPV1 channels in alveolar cells. Importantly, CGRP protected alveolar cells from hyperoxia­induced injury via the CGRPR/TRPV1/Ca2+ axis, which may be a potential target for the prevention and treatment of the HILI.


Alveolar Epithelial Cells , Apoptosis , Calcitonin Gene-Related Peptide , Calcium , Cell Proliferation , Receptors, Calcitonin Gene-Related Peptide , TRPV Cation Channels , Humans , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/pharmacology , Apoptosis/drug effects , A549 Cells , Calcium/metabolism , Cell Proliferation/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Receptors, Calcitonin Gene-Related Peptide/metabolism , Hyperoxia/metabolism , Signal Transduction/drug effects , Calcium Signaling/drug effects
8.
IDCases ; 36: e01953, 2024.
Article En | MEDLINE | ID: mdl-38707650

One patient with rifampin-resistant tuberculosis underwent emergency left pneumonectomy and thoracic gauze packing for hemoptysis due to recurrent hemoptysis after transcatheter arterial embolization. Vital signs were maintained by mechanical ventilation and medication. Tracheotomy and anti-tuberculosis treatment were performed. After half a year of follow-up, the patient's condition was stable.

9.
Pain Ther ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38748200

INTRODUCTION: Tension-type headache (TTH) is common but challenging to manage due to limited effectiveness of conventional treatments. This study examines six complementary and alternative medicine (CAM) interventions through network meta-analysis to identify effective TTH management strategies. METHODS: We searched PubMed, Embase, Web of Science, Cochrane Library, OVID, CNKI, Wanfang, VIP, and CBM databases for randomized controlled trials on CAM for TTH treatment. Headache frequency and intensity were the primary outcomes. Methodological quality was evaluated on the basis of the Cochrane risk of bias tool. We used R software to conduct this Bayesian network meta-analysis. We used mean difference (MD) with 95% credible intervals (CI) to calculate the continuous outcomes and analyzed the percentages of the surface under the cumulative ranking (SUCRA) curve. RESULTS: In total, 32 randomized controlled trials (RCTs) with 2405 participants were analyzed. For reducing headache intensity, the network meta-analysis shows that acupuncture therapy combined with traditional Chinese medicine (AT_TCM), manual therapy (MT), psychological treatment (PT), and traditional Chinese medicine combined with acupuncture and manual therapy (TCM_AT_MT) are superior to Western medicine (WM). In the SUCRA curve, TCM_AT_MT is the best for reducing headache frequency (HF). CONCLUSIONS: This review, assessed as low-quality evidence by GRADE, cautiously suggests potential benefits of PT over other CAM interventions for TTH and indicates TCM_AT_MT might better reduce HF. It proposes that combining CAM interventions could enhance outcomes. Due to the preliminary nature of these findings, further high-quality RCTs are essential to confirm these suggestions and provide clearer clinical guidance. PROSPERO REGISTRATION NUMBER: CRD42021252073.

10.
Adv Healthc Mater ; : e2401020, 2024 May 14.
Article En | MEDLINE | ID: mdl-38742703

Chemotherapy has been widely used for cancer therapy but with unsatisfied efficacy, mainly due to the inefficient delivery of anticancer agents. Among the critical "five steps" drug delivery process, internalization into tumor cells and intracellular drug release are two important steps for the overall therapeutic efficiency. Strategy based on active targeting or TME-responsive has been developed individually to improve therapeutic efficiency, but with limited improvement. However, the combination of these two strategies could potentially augment the drug delivery efficiency and therapeutic efficiency, consequently. Therefore, we constructed a library of stimuli-responsive aptamer-drug conjugates (srApDCs), as "dual-targeted" strategy for cancer treatment that enables targeted drug delivery and controlled drug release. Specifically, we used different stimuli-responsive linkers to conjugate a tumor-targeting aptamer (i.e., AS1411) with drugs, forming the library of srApDCs for targeted cancer treatment. Our design hypothesis was validated by the experimental data, which indicated that the aptamer could selectively enhance uptake of the srApDCs and the linkers could be cleaved by pathological cues in the TME to release the drug payload, leading to a significant enhancement of therapeutic efficacy. These results underscore the potential of our approach, providing a promising methodology for cancer therapy. This article is protected by copyright. All rights reserved.

11.
PLoS One ; 19(5): e0302386, 2024.
Article En | MEDLINE | ID: mdl-38713669

BACKGROUND: The purpose of this study was to evaluate the relationship between hyperuricemia and the risks of all-cause mortality and cardiovascular disease (CVD) mortality in patients with osteoarthritis (OA). METHODS: A retrospective cohort study was performed on 3,971 patients using data from the National Health and Nutrition Examination Survey database between 1999 and 2018. OA was diagnosed through specific questions and responses. The weighted COX regression models were used to explore the factors associated with all-cause mortality/CVD mortality in OA patients. Subgroup analyses were conducted based on age, gender, hypertension, dyslipidemia, CVD, and chronic kidney disease (CKD). Hazard ratio (HR) and 95% confidence interval (95% CI) were measured as the evaluation indexes. RESULTS: During the duration of follow-up time (116.38 ± 2.19 months), 33.69% (1,338 patients) experienced all-cause mortality, and 11.36% (451 patients) died from CVD. Hyperuricemia was associated with higher risks of all-cause mortality (HR: 1.22, 95% CI: 1.06-1.41, P = 0.008) and CVD mortality (HR: 1.32, 95% CI: 1.02-1.72, P = 0.036) in OA patients. Subgroup analyses showed that hyperuricemia was related to the risk of all-cause mortality in OA patients aged >65 years (HR: 1.17, 95% CI: 1.01-1.36, P = 0.042), in all male patients (HR: 1.41, 95% CI: 1.10-1.80, P = 0.006), those diagnosed with hypertension (HR: 1.17, 95% CI: 1.01-1.37, P = 0.049), dyslipidemia (HR: 1.18, 95% CI: 1.01-1.39, P = 0.041), CVD (HR: 1.30, 95% CI: 1.09-1.55, P = 0.004), and CKD (HR: 1.31, 95% CI: 1.01-1.70, P = 0.046). The association between hyperuricemia and a higher risk of CVD mortality was found in OA patients aged ≤ 65 years (HR: 1.90, 95% CI: 1.06-3.41, P = 0.032), who did not suffer from diabetes (HR: 1.36, 95% CI: 1.01-1.86, P = 0.048), who did not suffer from hypertension (HR: 2.56, 95% CI: 1.12-5.86, P = 0.026), and who did not suffer from dyslipidemia (HR: 2.39, 95% CI: 1.15-4.97, P = 0.020). CONCLUSION: These findings emphasize the importance of monitoring serum uric acid levels in OA patients for potentially reducing mortality associated with the disease.


Cardiovascular Diseases , Hyperuricemia , Nutrition Surveys , Osteoarthritis , Humans , Hyperuricemia/complications , Hyperuricemia/mortality , Hyperuricemia/epidemiology , Male , Female , Osteoarthritis/mortality , Osteoarthritis/complications , Osteoarthritis/epidemiology , Middle Aged , Retrospective Studies , Aged , Cardiovascular Diseases/mortality , Cardiovascular Diseases/complications , Risk Factors , Renal Insufficiency, Chronic/mortality , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/epidemiology , Databases, Factual , Proportional Hazards Models , Hypertension/complications , Hypertension/mortality , Hypertension/epidemiology , Adult , Dyslipidemias/mortality , Dyslipidemias/complications , Dyslipidemias/epidemiology
12.
iScience ; 27(4): 109506, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38715945

It is imperative to explore biomarkers that are both precise and readily accessible in the comprehensive management of breast cancer. A multicenter cohort, including 512 breast cancer patients and 198 nonneoplastic individuals, was recruited to detect the level of tumor-derived extracellular vesicles using our method based on dual DNA tetrahedral nanostructures. The level of tumor-derived extracellular vesicles was significantly higher in newly diagnosed breast cancer patients than in nonneoplastic individuals at a cutoff value of 3.58 U/µL. For postoperative metastasis monitoring, the level of tumor-derived extracellular vesicles was significantly higher in breast cancer patients with metastasis than in those without metastasis at a cutoff value of 3.91 U/µL. Its efficacy of diagnosis and metastasis monitoring was superior to traditional tumor markers. Elevated level of tumor-derived extracellular vesicles served as a predictive biomarker for diagnosis and metastasis monitoring in breast cancer patients.

13.
Small ; : e2309907, 2024 May 07.
Article En | MEDLINE | ID: mdl-38712486

The biophysical properties of the extracellular matrix (ECM) play a pivotal role in modulating cancer progression via cell-ECM interactions. However, the biophysical properties specific to gastric cancer (GC) remain largely unexplored. Pertinently, GC ECM shows significantly heterogeneous metamorphoses, such as matrix stiffening and intricate restructuring. By combining collagen I and alginate, this study designs an in vitro biomimetic hydrogel platform to independently modulate matrix stiffness and structure across a physiological stiffness spectrum while preserving consistent collagen concentration and fiber topography. With this platform, this study assesses the impacts of matrix biophysical properties on cell proliferation, migration, invasion, and other pivotal dynamics of AGS. The findings spotlight a compelling interplay between matrix stiffness and structure, influencing both cellular responses and ECM remodeling. Furthermore, this investigation into the integrin/actin-collagen interplay reinforces the central role of integrins in mediating cell-ECM interactions, reciprocally sculpting cell conduct, and ECM adaptation. Collectively, this study reveals a previously unidentified role of ECM biophysical properties in GC malignant potential and provides insight into the bidirectional mechanical cell-ECM interactions, which may facilitate the development of novel therapeutic horizons.

14.
SLAS Technol ; : 100138, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38692508

This research presents a novel method for objectively evaluating college badminton players' physical function levels. It examines current evaluation methods before proposing a novel model that combines Particle Swarm Optimization (PSO) with Backpropagation (BP) neural networks and data mining. The model establishes an evaluation index system that considers physical form, function, quality, and neural mechanisms. The study uses PSO-BP neural networks to adjust indicator weights for more accurate ratings. This recurrent improvement reduces errors while increasing prediction ability, resulting in accurate assessments of athletes' physical talents and neurological insights. The model's efficiency is proved by low mistakes and high accuracy results, which are critical for training optimization and injury avoidance. The combination of PSO optimization and BP neural networks offers robustness across various athlete profiles and training scenarios. This method improves physical function evaluation in badminton and has wider implications for sports science and performance analytics. This study uses bio-inspired computing and machine learning to emphasize the relevance of data-driven techniques in enhancing athlete assessments for better training outcomes and general well-being.

16.
Bioresour Technol ; 402: 130800, 2024 May 09.
Article En | MEDLINE | ID: mdl-38734259

A sulfur-iron coupled ecological floating bed (EFB-SFe) was developed to enhance the denitrification capability of sulfur-based ecological floating beds (EFB-S). The denitrification performance, kinetic process and microbial community composition were explored. Results showed that sulfur-iron coupling effectively enhanced the denitrification performance of EFB, surpassing the sum of their individual effects. The average total nitrogen removal rate ranged from 1.56 to 4.56 g·m-2·d-1, with a removal efficiency of 22-84 %. The k value for the S + Fe group increased from 0.04 to 0.18 d-1 to 0.40-0.46 d-1 relative to the S group. The sulfur-iron coupling promoted the enrichment of denitrifying bacteria (Thiobacillus and Ferritrophicum). The denitrification genes in EFB-SFe were upregulated, being 12-22 times more abundant than in EFB-S. Sulfur and iron autotrophic denitrification were identified as the main nitrogen removal processes in EFB-SFe. Overall, sulfur-iron coupling showed the potential to enhance the denitrification capacity of EFB-S for treating low-pollution water.

17.
BMJ Open ; 14(4): e072626, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38688669

OBJECTIVE: People with visual impairment have more functional limitations associated with subjective cognitive decline (SCD), and those with SCD are extremely susceptible to transitioning to irreversible cognitive impairment. This study aimed to explore if visual impairment is a significant predictor of SCD compared with other socioeconomic and health factors associated with SCD. DESIGN: Cross-sectional study. SETTING AND PARTICIPANTS: The investigation aimed to assess the factors influencing SCD among 428 participants aged 60 and above in Zhaoyuan, China. PRIMARY OUTCOME MEASURES: The primary outcome variable was SCD, measured by the Chinese version of SCD questionnaire. Multiple logistic regression and propensity score matching (PSM) were used to analyse the influence of visual impairment on the subjective cognition of the elderly.32.2% of the elderly were experiencing SCD. Older adults with SCD showed a higher prevalence of visual impairment (72.5%) than the elderly without SCD (58.6%) (P=0.006). Multivariate logistic regression analysis showed that bad self-reported health status, lack of physical exercise and visual impairment were the risk factors for SCD in older adults, while more than 9 years of education was a protective factor. In addition, PSM model showed that after eliminating the dominant biases caused by the individual observable heterogeneity of older adults with and without visual impairment, the risk of SCD in the elderly with visual impairment was increased by 13.6%-14.5% and the difference was statistically significant (P<0.05). CONCLUSIONS: It was found that older adults experiencing visual impairments are at an elevated risk of developing SCD compared with their counterparts without such impairments. Additionally, visual impairment remains a significant risk factor for SCD in the elderly, even adjusting for potential biases arising from individual observable heterogeneity.


Cognitive Dysfunction , Vision Disorders , Humans , Cross-Sectional Studies , Male , Female , Aged , China/epidemiology , Cognitive Dysfunction/epidemiology , Vision Disorders/epidemiology , Risk Factors , Middle Aged , Logistic Models , Aged, 80 and over , Health Status , Prevalence , Surveys and Questionnaires , Propensity Score
18.
J Affect Disord ; 356: 414-423, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38640975

BACKGROUND: Amotivation is a typical feature in major depressive disorder (MDD), which produces reduced willingness to exert effort. The dorsolateral prefrontal cortex (DLPFC) is a crucial structure in goal-directed actions and therefore is a potential target in modulating effortful motivation. However, it remains unclear whether the intervention is effective for patients with MDD. METHODS: We employed transcranial magnetic stimulation (TMS), computational modelling and event-related potentials (ERPs) to reveal the causal relationship between the left DLPFC and motivation for effortful rewards in MDD. Fifty patients underwent both active and sham TMS sessions, each followed by performing an Effort-Expenditure for Rewards Task, during which participants chose and implemented between low-effort/low-reward and high-effort/high-reward options. RESULTS: The patients showed increased willingness to exert effort for rewards during the DLPFC facilitated session, compared with the sham session. They also had a trend in larger P3 amplitude for motivated attention toward chosen options, larger CNV during preparing for effort exertion, and larger SPN during anticipating a high reward. Besides, while behavior indexes for effortful choices were negatively related to depression severity in the sham session, this correlation was weakened in the active stimulation session. CONCLUSIONS: These findings provide behavioral, computational, and neural evidence for the left DLPFC on effortful motivation for rewards. Facilitated DLPFC improves motor preparation and value anticipation after making decisions especially for highly effortful rewards in MDD. Facilitated DLPFC also has a potential function in enhancing motivated attention during cost-benefit trade-off. This neuromodulation effect provides a potential treatment for improving motivation in clinics.


Depressive Disorder, Major , Dorsolateral Prefrontal Cortex , Motivation , Reward , Transcranial Magnetic Stimulation , Humans , Depressive Disorder, Major/therapy , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/psychology , Motivation/physiology , Male , Female , Adult , Middle Aged , Dorsolateral Prefrontal Cortex/physiology , Evoked Potentials/physiology , Electroencephalography , Attention/physiology
19.
Eur J Pharmacol ; 973: 176582, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38642668

The growing burden of psychological stress among diabetes patients has contributed to a rising incidence of depression within this population. It is of significant importance to conduct research on the impact of stress on diabetes patients and to explore potential pharmacological interventions to counteract the stress-induced exacerbation of their condition. Gastrodin is a low molecular weight bioactive compound extracted from the rhizome of Gastrodiae elata Blume, and it may be a preventive strategy for diabetes and a novel treatment for depression symptoms. However, its relevant pharmacological mechanisms for protecting against the impacts of psychological stress in diabetic patients are unclear. In this study, we performed 5 weeks CUMS intervention and simultaneously administered gastrodin (140 mg/kg, once daily) on T2DM mice, to investigate the potential protective effects of gastrodin. The protective effect of gastrodin was evaluated by behavioral tests, biochemical analysis, histopathological examination, RT-qPCR and gut microbiota analysis. We found that the depressive-like behavior and glucolipid metabolism could be deteriorated by chronic stress in type 2 diabetic mice, while gastrodin showed a protective effect against these exacerbations by regulating HPA hormones, activating FXR and Cyp7a1, reducing inflammatory and oxidative stress responses, and regulating ileal gut microbiota abundance. Gastrodin might be a potential therapeutic agent for mitigating the deterioration of diabetes conditions due to chronic stress.


Behavior, Animal , Benzyl Alcohols , Depression , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Glucosides , Stress, Psychological , Animals , Benzyl Alcohols/pharmacology , Benzyl Alcohols/therapeutic use , Glucosides/pharmacology , Glucosides/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/psychology , Depression/drug therapy , Depression/metabolism , Male , Mice , Stress, Psychological/drug therapy , Stress, Psychological/complications , Stress, Psychological/metabolism , Stress, Psychological/psychology , Gastrointestinal Microbiome/drug effects , Behavior, Animal/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Mice, Inbred C57BL , Oxidative Stress/drug effects , Chronic Disease
20.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 176-183, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38686713

Objective To evaluate the clinical efficacy and safety of intensive insulin therapy in the patients with acute myocardial infarction and provide guidance for improving the prognosis. Methods The articles involving the randomized controlled trials(RCT)focusing on the effects of intensive versus conventional insulin therapy on the clinical outcomes of the patients with acute myocardial infarction were retrieved from Cochrane,Embase,PubMed,CNKI,Wanfang Data,VIP,and CBM with the time interval from inception to October 2022.The data of each RCT were extracted and used for meta-analysis in RevMan5.4. Results A total of 8 articles were included in this study,involving 726 patients(372 in the intensive insulin group and 354 in the normal insulin group).The meta-analysis results showed that the intensive insulin group had lower incidence of major cardiovascular adverse events (RR=0.53, 95%CI=0.44-0.64, P<0.001), lower all-cause mortality (RR=0.51, 95%CI=0.33-0.78, P=0.002),lower high-sensitivity C-reactive protein level on day 7(WMD=-2.00,95%CI=-2.17- -1.83,P<0.001),higher left ventricular ejection fraction on day 30 (WMD=3.94, 95%CI=2.45-5.43,P<0.001), and higher incidence of hypoglycemia events (RR=2.96, 95%CI=1.12-7.83,P=0.030) than the normal insulin group.There was no significant difference between the two groups in terms of no-reflow event after percutaneous coronary intervention(RR=0.39,95%CI=0.14-1.13,P=0.080). Conclusion Intensive insulin therapy might be associated with more clinical benefits in the patients with acute myocardial infarction,while the conclusion remains to be confirmed by more studies.


Insulin , Myocardial Infarction , Humans , Myocardial Infarction/drug therapy , Insulin/therapeutic use , Insulin/administration & dosage , Prognosis , Randomized Controlled Trials as Topic , C-Reactive Protein
...